首页> 外文OA文献 >Evaluation of drag models for CFD simulation of fluidized bed biomass gasification
【2h】

Evaluation of drag models for CFD simulation of fluidized bed biomass gasification

机译:流化床生物质气化CFD模拟阻力模型评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gasification of biomass into suitable feedstock has become a feasible alternative technology for reducing the use of energy feedstock from fossil sources. Usually, fluidized bed technology is used in the biomass gasification reactor. Optimization of a fluidized bed reactor needs to take into account the bed behavior in the presence of both biomass and bed material, as well as chemical conversion of particles and volatiles, among other process parameters. CFD simulation of the process is a valuable tool to go about the optimization. However, simulation result validation is limited by the accuracy of input parameters such as those characterizing several drag models given in the literature. This study is focusing on the drag model parameters. The simulation is aimed at validating some of the commonly used models for drag forces against the bed material(s) used in the fluidized bed gasification reactor. Drag models included in this study are those given by Syamlal and O’Brien, Gidaspow, and BVK. The MFiX CFD-software (version 2016.1) from The National Energy Technology Laboratory (NETL) is used. The Two-Fluid Model (TFM) are applied for comparison of the results. The key factors for validation of the drag models are based on the superficial gas velocity at the minimum fluidization condition and the degree of bed expansion. The simulation results show that the minimum fluidization velocity could be predicted using the Gidaspow and BVK drag models by adjusting the particle diameter used in the simulation. For the Syamlal & O’Brien drag model, two parameters are fitted to predict the minimum fluidization velocity. The bubbling bed behavior is not captured using the Syamlal & O’Brien drag model while Gidaspow and BVK drag models fairly captures this phenomenon. The bed expansion from the simulation is higher than that observed in the experiment, and the deviation is even higher with the Syamlal & O’Brien drag model.
机译:将生物质气化成合适的原料已经成为减少化石能源原料使用的可行替代技术。通常,在生物质气化反应器中使用流化床技术。流化床反应器的优化需要考虑到在存在生物质和床物质的情况下的床行为,以及颗粒和挥发物的化学转化,以及其他工艺参数。流程的CFD模拟是进行优化的宝贵工具。但是,仿真结果验证受到输入参数准确性的限制,例如那些表征文献中给出的几种阻力模型的参数。这项研究集中在阻力模型参数上。该模拟旨在验证针对流化床气化反应器中使用的床层材料的阻力的一些常用模型。这项研究中包括的阻力模型是Syamlal和O’Brien,Gidaspow和BVK给出的模型。使用了美国国家能源技术实验室(NETL)的MFiX CFD软件(2016.1版)。应用双流体模型(TFM)进行结果比较。阻力模型验证的关键因素是基于最小流化条件下的表观气体速度和床层膨胀程度。仿真结果表明,可以通过调整仿真中使用的粒径,使用Gidaspow和BVK阻力模型来预测最小流化速度。对于Syamlal&O'Brien阻力模型,拟合了两个参数以预测最小流化速度。使用Syamlal&O’Brien阻力模型无法捕获起泡床行为,而Gidaspow和BVK阻力模型则可以很好地捕获这种现象。模拟得出的床层膨胀高于实验中观察到的膨胀,而使用Syamlal&O'Brien阻力模型的偏差甚至更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号